Demis Hassabis: The obvious thing that’s already happening today has to do with radiography. So the low-hanging fruit, in some sense, is making sense of imaging data, whether that’s a PET scan of cancerous tissue or what we’ve worked directly on, which is retina scans and detecting macular degeneration very, very early on. There aren’t enough radiographers, and often the diagnosis from these scans is one of the bottlenecks to you getting treatment, and in a lot of these cases delayed treatment can be very critical to the outcome. So we’re already collaborating with many hospitals in the UK about adding in machine learning and AI tools to help with those pattern recognitions, if you like, those assessments about what’s happening in those scans. So I think that’s going to result in much more efficient diagnosis and much more efficient treatment. So I think that’s just the beginning. Then the next step will be things like drug discovery, where you’ve got some target, some virus or some bacteria, and you need to generate some new compound that will target that. I think, again there, we’re on the cusp of being able to use things like machine learning to discover new types of drugs.