Mario Molina: Of course, we were not sure. We realized that the atmosphere is very complicated and that we didn’t know — certainly by far — everything that there is to know about it. On the other hand, pieces of evidence began to come for measurements. Experiments were carried out, and we know that these gases were indeed reaching the stratosphere — the CFCs. We know that the composition products were indeed there, but it was very difficult to measure these actual effects on ozone, because the ozone amounts in the stratosphere fluctuate. On the other hand, we actually did not predict that ozone would be depleted specifically over Antarctica. We just made a very general prediction that these — the composition products — could affect the ozone layer in general terms. So it actually came as a surprise that this large effect was happening in this coldest place on earth. On the other hand, with all the scientific research that had been carried out before the Antarctic ozone hole was found, it was just a matter of a few years for us and the rest of the scientific community to understand — with experiments in the laboratory as well as in the atmosphere — very clearly why is it that specifically Antarctica was the place where this hole appeared. And the reason, of course, is that it’s very cold there, and clouds can actually form over Antarctica that do not form anywhere else in the stratosphere that are sufficiently cold to promote a new type of chemistry that we then investigated in the laboratory. So in other words, what happens is even though our predictions were not very specific, we lay down, together with our colleagues, a foundation and an infrastructure to really understand on a very rapid time scale the nature of all these effects once they became clear.